
MMSP

The Mesoscale Microstructure Simulation Project

Jason Gruber

October 24, 2010

2

Contents

1 Introduction 5
1.1 The MMSP concept . 5
1.2 What MMSP does . 6
1.3 What MMSP doesn’t do . 6
1.4 What MMSP requires . 7
1.5 Terms of use . 7

2 Getting started with MMSP 9
2.1 Download . 9
2.2 Installation . 10
2.3 Setup . 11
2.4 Support . 12

3 MMSP tutorials 13
3.1 A quick tutorial . 13

3.1.1 The Hello MMSP! program 13
3.1.2 Compiling and running Hello MMSP! 14

3.2 A grid class example . 15
3.3 More examples . 18

3.3.1 Accessing node data . 18
3.3.2 File input and output . 19
3.3.3 Boundary conditions . 20

3.4 The prototypical MMSP program 21
3.5 Application: the Allen-Cahn equation 23
3.6 Running the example codes . 25

4 MMSP data classes 27
4.1 Introduction . 27
4.2 Common features . 27
4.3 Using MMSP data types . 29

4.3.1 The scalar class . 29
4.3.2 The vector class . 29
4.3.3 The sparse class . 31

4.4 Using built-in data types . 32

3

4 CONTENTS

4.5 Writing new data classes . 32

5 The grid class 33
5.1 Introduction . 34
5.2 grid class member functions . 35

5.2.1 Constructors . 35
5.2.2 Subscripting . 35
5.2.3 File I/O . 35
5.2.4 Buffer I/O . 35
5.2.5 Accessing grid parameters 35
5.2.6 Setting grid parameters 35
5.2.7 Utility functions . 35
5.2.8 Parallel communications 35
5.2.9 Multigrid functionality . 35

5.3 grid class examples . 35
5.3.1 Constructing a grid . 35
5.3.2 Initializing a grid . 36
5.3.3 Setting up grid parameters 36
5.3.4 Accessing grid parameters 36
5.3.5 Reading to and writing from files 36
5.3.6 Using grid in a parallel program 36

6 Specialized grid classes 37
6.1 Introduction . 37
6.2 CAgrid . 37
6.3 FDgrid . 37
6.4 MCgrid . 37
6.5 PFgrid . 37
6.6 sparsePF . 37

Chapter 1

Introduction

The goal of the Mesoscale Microstructure Simulation Project (MMSP) is to pro-
vide a simple, consistent, and extensible programming interface for all grid and
mesh based microstructure evolution methods. Simple means that the package
has a very small learning curve, and for most routine simulations, only a min-
imal amount of code must be written. By consistent we mean, for example,
that code for two-dimensional simulations is nearly identical to that for three-
dimensional simulations, single processor programs are easily parallelized, and
fundamentally different methods like Monte Carlo or phase field have the same
look and feel. Finally, extensible means that it’s straightforward to add new
grid types or physical behaviors to the package. Other considerations include
efficiency and portability (MMSP is written entirely in ISO compliant c++).

1.1 The MMSP concept

The design of MMSP is based on several observations about how mesoscale sim-
ulations are used by materials scientists: most mesoscale simulations discretize
the spatial domain using a rectilinear grid. A data structure is associated with
each grid node that has a particular size (scalar, vector, etc.) and value type
(integer, floating point) depending on the simulation method. Most simulations
update the data structure at each node in a way that falls under some common
methodology (Monte Carlo, phase field, etc.) but has features unique to each
given physical process. What this roughly means is that most mesoscale simu-
lations use a common spatial discretization, but we usually need to tweak the
details of how we represent spatial data and how we update it. The unfortunate
truth is that typically, a researcher wishing to model a particular physical pro-
cess produces code with a focus mainly on the particulars of the process itself
(the “tweak”), largely ignoring the problem of how to design reusable data struc-
tures. What happens when they decide they should try a different simulation
method, or when they realize that they need to use a parallel implementation?
It then becomes apparent that more flexible data structures should have been

5

6 CHAPTER 1. INTRODUCTION

used in the first place. The purpose of MMSP is to provide the core function-
ality that we don’t necessarily want to think about each time we program a
new method. MMSP helps keep its users from reinventing grid data structures,
file input and output, parallelization, handling boundary conditions, etc. while
retaining enough flexibility to model a large number of physical processes.

Those familiar with similar code packages might have already noticed that
the MMSP concept is a bit unusual. Other packages typically provide a very
high level interface intended for use with a single computational method. Us-
ing the interface typically means learning package-specific methodology, classes,
functions, methods, etc. In contrast, MMSP is meant to be used for any and
all grid-based methods, and provides a much lower level interface. This results
in a lot more flexibility in what MMSP can do. And while MMSP still requires
some learning, users will find that they are able to leverage much more of their
previous programming experience.

1.2 What MMSP does

MMSP is nothing more than a collection of c++ header files that declare a num-
ber of grid objects (classes) and define how most of their methods (member
functions) are implemented. Some things MMSP provides include:

• A simple, extensible programming interface

• Computational grids of arbitrary dimension

• Parallel implementations using MPI

• Automatic, optimal parallel mesh topologies

• Utility programs for grid visualization

• Classes for Monte Carlo methods

• Classes for cellular automata methods

• Classes for phase field methods (conventional)

• Classes for phase field methods (sparsePF)

• Classes for general finite difference PDE solvers

• Example simulation methods and grid objects

1.3 What MMSP doesn’t do

MMSP is not the kind of software that reads a few parameters or an input file
specified by the user and cranks out some generic computation. In fact, MMSP
relies on the user to provide code for all of the real physics that the simulation

1.4. WHAT MMSP REQUIRES 7

is intended to capture. This isn’t as scary as it sounds. MMSP was designed to
make this procedure as simple as possible. The takeaway message here is that
MMSP makes programming materials simulation code easier, but it isn’t a “black
box” that can be used by a complete novice.

1.4 What MMSP requires

The MMSP interface is intended to look and feel very natural for most program-
mers with experience in scientific computing. While many of the most advanced
features of c++ have been used in creating the grid and data classes, the user
need not be proficient in anything other than basic procedural programming.
Fortran, c, and novice c++ programmers alike will find that MMSP is quite easy
to use. Basic requirements include:

• Minimal programming experience

• A c++ compiler with ISO compliant libraries and headers (e.g. gcc 2.95
or later)

• MPI libraries are required if compiling parallel programs (e.g. OpenMPI)

1.5 Terms of use

MMSP is freely available for anyone performing non–profit scientific research;
those interested in using MMSP for any other purposes should contact the author.
We give no guarantees whatsoever about the capabilities of MMSP . If you use
MMSP in your research, please tell others about it, send us any new code you’d
like to see incorporated into the package, and above all, give us feedback!

8 CHAPTER 1. INTRODUCTION

Chapter 2

Getting started with MMSP

The following sections provide the necessary information for new users to obtain
and set up MMSP . Typically, this involves downloading a source code archive,
unpacking it, and running a few tests. Developers or those interested in main-
taining an up-to-date version of the code should consider checking out a copy
from the subversion repository.

2.1 Download

The MMSP source code is hosted online at MatForge. From the main MatForge
site, users should navigate to the MMSP home page and choose the appropriate
links under the section Download, as these links are set up to point to the latest
MMSP release. Archives containing the MMSP source code are provided in the
usual Linux tarball convention (with filename extension .tar.gz), and as a
zip file (with extension .zip). Users should download an archive that can be
unpacked by existing utilities on their platform; if you are unsure which archive
to download, read the following section titled “Installing MMSP ” before making
your choice.

Alternatively, a user may choose to check out a copy from the subversion
repository. This requires the subversion version control software to be installed
on the target machine, as well as a working internet connection. From the
command line, type

svn checkout https://matforge.org/svn/cmu/MMSP

If the checkout is successful, then there is no need to perform the steps for
intstallation described below, and the user should move on to setup.

Having a local copy of MMSP makes it simple to keep your code up-to-date.
From the root folder, simply type

svn update

to update a working copy with the latest version of the MMSP source code. See
the subversion documentation for more details on version control.

9

https://matforge.org
http://www.subversion.com

10 CHAPTER 2. GETTING STARTED WITH MMSP

2.2 Installation

After an appropriate source code archive is obtained as described above, the
next step is to install MMSP . This should be as simple as unpacking the archive.
Users with administrator priveledges may choose to install the MMSP header files
in a location that will be searched by their compiler’s preprocessor, but we do
not describe how to do this here. The following paragraphs provide platform-
specific instructions for a local installation.

Linux/Unix Local installation for Linux users should simply involve unpack-
ing the archive. As most Linux systems have means to unpack both tarballs
and zip files, there is likely no reason to prefer either. After downloading the
archive file, move it to the directory where you want MMSP to reside, making
sure that you have read access to the file as well as write access to the directory.
Then issue a command to unpack the archive, e.g.

tar zxf MMSP.3.0.6.tar.gz

or

unzip MMSP.3.0.6.zip

This will unpack the contents of the archive into a folder named MMSP . Next,
type

ls MMSP

which should indicate that folders such as MMSP/doc, MMSP/examples, etc. have
been created. If either command fails or the folder MMSP is not created, check
the tar or unzip documentation.

Mac OS Mac OS users will follow much of the same procedure as Linux users,
so it is advisible to read the previous section on Linux installation. For those
uninitiated, or who have never had any previous reason to use it, the Terminal
application can be found under Applications/Utilities. Again, all steps
described above for Linux installation should apply here as well.

Windows For those who insist on using Windows, it is still possible to use
MMSP . The preferred way to do this is to use the cygwin environment. To
use cygwin with MMSP , it is necessary that appropriate packages, such as gcc
(the GNU compiler) and make (the GNU make utility), have been installed.
These are optional packages that must be chosen manually during installation.
If cygwin has been installed properly, MMSP may be installed by following the
steps described above for Linux installations.

It is also possible to compile MMSP source code within a code development
environment such as Visual Studio, however, MMSP code is typically so simple
that any code management beyond command line or makefile compilation is
only a hinderance.

http://www.cygwin.com

2.3. SETUP 11

2.3 Setup

Once MMSP has been installed, there are a few useful tests and utility programs
that should be generated. First, enter the MMSP/test directory and type

make test

or, if make is not installed, type

g++ -I ../include test.cpp -o test

If this compiles with no problems, then you’re in luck; issue the command

./test

which will generate a short message indicating successful operation.
If the test program fails to compile, it is most likely because either make or

g++ (the GNU c++ compiler) is not installed on the system or is not configured
properly. Of course, any other ISO-compliant c++ compiler may be used instead.
If there is a problem at this stage, users should check their configuration.

Next, enter the directory MMSP/utility and type

make utility

This will produce a number of conversion programs. In particular, it will pro-
duce several programs such as mmsp2vti which can be used to convert MMSP
grid data files into formats that can be read by visualization software such
as ParaView. Because the programs provided in this directory are used so of-
ten, MMSP users may wish to add the MMSP/utility directory to their command
path. This can be achieved by adding the following lines to their $HOME/.bashrc
file,

PATH=$PATH:MMSP/utility
export PATH

for users of the bash shell, or

setenv PATH $PATH:MMSP/utility

for users of the tcsh shell.
Finally, those who plan to use MMSP with the MPI (Message Passing Inter-

face) libraries should also take this opportunity to test their MPI configuration.
To do this, type

make parallel

which, if successful, produces a parallel version of the test program. Once the
code is compiled, run the program using an appropriate command for your MPI
distribution, e.g.

mpirun -np 4 parallel

http://www.paraview.org

12 CHAPTER 2. GETTING STARTED WITH MMSP

Note that for successful compilation, the MPI distribution is expected to provide
a compilation script named mpic++ and a the header file named mpi.h. If the
program fails to compile, it may be that the user’s MPI distribution provides
mpicxx, mpiCC, or the like instead of mpic++, or that it provides mpicxx.h
or something similar instead of mpi.h. In this case, the user should edit the
Makefile accordingly. Likewise, the appropriate command to run the compiled
program may differ depending on the MPI distribution. This may take the
form of, e.g. mpiexec, instead of mpirun. Unfortunately, MPI distributions do
not adhere to a single standard with respect to compiling and running parallel
programs, and so it is largely left to the user to determine what must be done
for their particular system.

2.4 Support

MMSP is not commercial code and there are no guarantees or claims, stated or
implied, pertaining to its fitness for any purpose. MMSP is intended soley for use
in non-profit scientific research. In spite of this, the MMSP team is devoted to
producing a quality product that addresses the needs of the scientific community.
Please do not hesitate to contact our development team with any questions or
suggestions. Contact information can be found on the MMSP page at MatForge.

https://matforge.org

Chapter 3

MMSP tutorials

The following sections present a few short tutorials on writing, compiling, and
running simple MMSP programs. For those totally confused by the syntax of the
examples presented here we suggest consulting an introductory c++ text first.

3.1 A quick tutorial

3.1.1 The Hello MMSP! program

Because every good programming language or interface tutorial starts with a
“Hello World!” example program, we’ll do the same. For most MMSP appli-
cations, we include a header file named MMSP.hpp. Then we need a main()
program and a few lines to print out our message. Here it is:

#include"MMSP.hpp"

int main(int argc, char* argv[])
{

MMSP::Init(argc,argv);

std::cout<<"Hello MMSP!"<<std::endl;

MMSP::Finalize();
}

The only code here that should look out of the ordinary are the statements

MMSP::Init(argc,argv);

and

MMSP::Finalize();

13

14 CHAPTER 3. MMSP TUTORIALS

What do these lines do? For single processor programs, they do absolutely
nothing – they could actually be removed without any consequences. However,
for programs that use the message passing interface (MPI), they act as wrappers
for the similarly named MPI::Init and MPI::Finalize commands. It’s useful
to include them here because they’ll allow us to write programs that may be
compiled for both single or multiple processor environments.

Programmers familiar with c++ will notice that there’s obviously some MMSP
namespace being used here. For those less familiar, namespaces are a somewhat
recent addition to c++ that are used as a means of avoiding naming conflicts.
We can avoid using namespace resolution so frequently if we use an appropriate
using statement, i.e.

#include"MMSP.hpp"
using namespace MMSP;

int main(int argc, char* argv[])
{

Init(argc,argv);

Namespaces serve to prevent programming errors and to ensure code reusability,
so naturally we should apply using statements with care. In the examples that
follow, we’ll sometimes assume a using statement has been issued for the sake
of brevity.

The observant reader may notice that we’ve used some of the stream in-
put/output functions of c++ without including the requisite <iostream> header.
In fact, this header and many other standard c++ headers are included implicitly
thorough the file MMSP.hpp. If you need a particular standard header for your
application and aren’t sure if it has been included by MMSP.hpp, you can always
just #include it in your source code without any ill effects.

So that’s it as far as the code goes. This is a source file that may be compiled
for both single and parallel simulations of... nothing. In a moment we will move
on to code that actually does something, but for now we should say a few words
about compiling the code and running the executable.

3.1.2 Compiling and running Hello MMSP!

Compiling code is a task that is, unfortunately, fairly platform dependent. While
MMSP programs should compile easily on any platform, the required steps to do
so may not look like the method shown here. That said, let’s look at how we
would compile the previous example for a typical Linux or Unix setup. Suppose
the above code has been saved to a file named hello.cpp, and that MMSP has
been extracted to the same directory. A typical Linux machine will have at the
least the GNU family of compilers installed, in which case we would type the
command

g++ -I MMSP/include hello.cpp -o hello

3.2. A GRID CLASS EXAMPLE 15

which produces an executable file named hello. The compiler option -I ...
suggests a directory to search for non-standard headers; if your MMSP headers
reside somewhere else, you’ll need to make the appropriate change. To run the
program, we type

./hello

which should produce our message. Many other compilers on Linux and Unix
machines use the same options as listed here, so this line may be very close to
what you might use, even if you’re not using g++.

Now let’s move on to parallel compilation. We assume that if you’re not
skipping over this part, you have the MPI libraries installed on your machine
(as well as your cluster). With a typical MPI installation, a number of programs
are included which effectively wrap your usual c++ compiler with a script named
something like mpic++, mpicxx, mpicc, etc. With this in mind, we issue a
command which may look like

mpicxx -I MMSP/include -include mpi.h hello.cpp -o hello

which again produces an executable named hello. This time, however, we
need to run hello using an MPI command such as mpirun or mpiexec (see the
documentation for your MPI distribution),

mpirun -np 4 hello

which in this case produces our message four times. The author sincerely hopes
that your experience is this straightforward, but don’t count on it!

3.2 A grid class example

In this section, we look at an example that uses the MMSP grid template class,
and actually resembles part of a program you might actually use:

#include"MMSP.hpp"
using namespace MMSP;

int main(int argc, char* argv[])
{

Init(argc,argv);

grid<2,int> GRID(1,0,100,0,100);

for (int x=x0(GRID); x<x1(GRID); x++)
for (int y=y0(GRID); y<y1(GRID); y++)

GRID[x][y] = GRID[x+1][y]-GRID[x-1][y];

output(GRID,"testgrid");

Finalize();
}

16 CHAPTER 3. MMSP TUTORIALS

This program performs the amazing feat of generating a new 2-dimensional grid
object, assigning to each node the sum of x and y, and then writing the final
state of the grid to a file, the name of which is simply testgrid. Of course
this isn’t really anything special, but the imaginative reader may begin to see
how this program might be used as a template to generate other, more useful
grid objects.

Several new features have been introduced in this example. First, the line

grid<2,int> GRID(1,0,100,0,100);

constructs the grid object. Objects of the grid class take two template argu-
ments (those arguments within < >), the first being the dimension (2) and the
second being the data type (int). In MMSP, the dimension of a grid can be any
(constant) integer greater than zero, while the data type can be any of c++’s
built-in types or any of the MMSP data types (to be discussed later). In other
words, MMSP allows for simulations in arbitrary spatial dimensions, and the type
of data stored at each grid point is quite flexible.

The name of the grid comes next, which in this case is (GRID), and is followed
by constructor arguments in parentheses. These arguments indicate the total
number of fields to create at each node (relevant only for vector-like data types)
and the lower and upper limits in the x and y directions, respectively. Like for
c++ arrays, lower grid limits are inclusive and upper limits are exclusive, so in
this case we have that 0 ≤ x, y < 100, and a total number of 100 nodes along
each coordinate axis. Unlike c++ arrays, the limits may be either positive or
negative, as long as the upper limit is always larger than the lower limit. Note
that these limits are the global limits; they define the size of the entire grid
object. The portion of a grid that is actually stored on a given machine is
usually smaller than this in parallel programs.

To give a sense of how the above generalizes to other dimensions and data
types, consider the following:

grid<3,double> GRID(1,0,128,0,256,0,256);

This statement declares a 3-dimensional grid object with 0 ≤ x < 128, 0 ≤ y <
256, 0 ≤ z < 256, and storage for the built-in data type double at each node.

Returning to the example code, the next lines iterate through the nodes of
the grid,

for (int x=x0(GRID); x<x1(GRID); x++)
for (int y=y0(GRID); y<y1(GRID); y++)

The functions x0, x1 and y0, y1 have been invoked to retrieve the local limits
in each direction. As suggested above, the local grid size in a parallel program
is typically smaller than the global grid size because parallelization in MMSP is
achieved through spatial decomposition. Use of these functions ensures that we
iterate only through the nodes stored by the local process. While it isn’t strictly
necessary to use these functions in code meant to be run on a single processor,
using them now will make parallelization completely trivial.

The line

3.2. A GRID CLASS EXAMPLE 17

GRID[x][y] = GRID[x+1][y]-GRID[x-1][y];

uses subscript operators [] to set and retrieve data stored at nodes of the
grid. The usage of the subscript operator should look familiar to anyone who
has programmed in c-style languages, and it has the expected effect – the sub-
script operator works the same way for MMSP grid objects as it does for sub-
scripted arrays. However, we will later see that the MMSP subscript operators
are “smarter” in the sense that they’re cognizant of boundary conditions and
adjust appropriately for calls made to nodes that are out of bounds. There are
also more advanced ways to access grid data which we will discuss later.

Finally, the line

output(GRID,"testgrid");

seems fairly self-explanatory, and it is. This writes the data contained within
the grid object to a file. Here we also note that in the case of a parallel program,
the output function performs the additional task of pieceing back together the
global grid object from all local grid objects before writing to a file.

As a point of reference, let’s now look at how we might do something similar
to the example above with the usual c or c++ subscripted arrays:

int main(int argc, char* argv[])
{

int GRID[100][100];

for (int x=0; x<100; x++)
for (int y=0; y<100; y++)

GRID[x][y] = GRID[x+1][y]-GRID[x-1][y];

// etc.
}

This may look considerably simpler, but consider the following: how do we run
this code as a parallel process? The immediate answer is that we introduce MPI
funtion calls, but then we also need to decide how to subdivide the grid, how to
deal with boundary conditions, how to put the pieces back together when we’re
done, etc. Then again, what if we want to change the number of processors or
number of nodes in each direction and maintain an optimal subdivision scheme?
And what about boundary conditions? As written, the code will attempt to
access data that is out of the bounds of the array. This will probably lead to
runtime errors, or at least some unintentional results. Additional code needs to
be written to remedy this problem. Starting from scratch, these operations all
require a great deal of code development, whereas all of these are done by MMSP
automatically.

18 CHAPTER 3. MMSP TUTORIALS

3.3 More examples

This section provides a number of additional examples demonstrating typical
MMSP operations.

3.3.1 Accessing node data

In the previous section, we saw how data within a grid object may be accessed
through the subscript operator, e.g.

// assign some node of GRID2D to "value"
double value = GRID2D[x][y];

// assign "value" to some node of GRID3D
GRID3D[x][y][z] = value;

There are two other ways to access data, both of which may be useful depending
on the context. The first alternative is through integer subscripting using the
parentheses operator (), e.g.

// assign the value of the ith node of GRID2D to "value"
double value = GRID2D(i);

// assign "value" as the value of the ith node of GRID3D
GRID3D(i) = value;

How is this operator useful? The answer is that it allows us to write code that
works nicely for grid objects of arbitrary dimension:

for (int i=0; i<nodes(GRID); i++) GRID(i) = ... ;

Here, the function nodes tells us how many nodes1 of the grid object are stored
locally, so that we can simply iterate through them with a single loop. If we
perform the same operations with each node regardless of dimension, then our
code can be reused without adding additional loops, subscript operators, etc.

The second alternative is through vector-based subscripting. In this case,
an MMSP::vector object is used:

MMSP::grid<2,double> GRID(1,0,100,0,100);
...

for (int i=0; i<nodes(GRID); i++) {
MMSP::vector<int> x = MMSP::position(GRID,i);
GRID(x) = ... ;

}

1The nodes function does not count “ghost” cells when such exist. This is not a problem
because the parentheses operator skips these nodes anyway.

3.3. MORE EXAMPLES 19

This example shows the declaration of an MMSP::vector object, and its assign-
ment to the coordinates of the ith node of the grid. How might this be useful?
Suppose we needed to perform some operation on all the nearest neighbors of
a given node. With vector-based subscripting, we can use vector addition to
make quick work of the problem,

for (int i=0; i<nodes(GRID); i++) {
MMSP::vector<int> x = MMSP::position(GRID,i);

for (int j=0; j<dim; j++) {
MMSP::vector<int> dx(dim); dx[j] = 1;

GRID(x+dx) = ... ;
GRID(x-dx) = ... ;

}
}

While this kind of operation could be handled quite easily with the more tradi-
tional subscript operator, note that this code would be much easier to extend
to any number of spatial dimensions.

3.3.2 File input and output

Input and output of grid data to a file are performed as follows:

const char* filename = "...";
grid<2,double> GRID(1,0,100,0,100);

// Input grid from file
input(GRID,filename);

// Output grid to file
output(GRID,filename);

Note that the second argument to the input and output functions is a character
array of type char*. Error checking does occur when a grid is input from a
file; attempts to input a grid of the wrong dimension or data type will cause
MMSP to produce a error message and exit the code.

To be sure, there’s probably only rare occasions when we want to use input
to overwrite an existing grid. Quite often, though, we want to create a new
grid object from grid data contained within a file. In this case, we use the
grid constructor,

const char* filename = "...";
grid<2,double> GRID(filename);

which reads grid data from the specified file and uses it to construct the grid
object.

20 CHAPTER 3. MMSP TUTORIALS

In a later chapter, we discuss the grid class in more detail, and in particular,
we note that most functions operating on a grid can be called in two ways. This
also applies here,

// One way to output a grid...
output(GRID,filename);

// ... and an equivalent way.
GRID.output(filename);

The first case uses typical C style syntax, while the second case uses the class
member function syntax of C++. For now, note that almost all functions that
operate on the grid class or other MMSP data classes may be called both ways.

In case you were wondering, all of the code shown above can be used in a
parallel program. In this case, the functions input and output automatically
coordinate I/O tasks over all processors. The grid constructor and the input
function also perform the task of determining the optimal2 grid subdivision
scheme.

3.3.3 Boundary conditions

Boundary conditions in MMSP are handled automatically. To show what this
means, consider the following:

grid<2,double> f(1,0,100,0,100);

for (int x=x0(f); x<x1(f); x++)
for (int y=y0(f); y<y1(f); y++) {

double dfdx = (f[x+1][y]-f[x-1][y])/(2.0*dx(f));
...

}

This code traverses each node in the grid, computing the derivative along the
x axis, among a number of other possible operations. This is simple enough,
but what happens at the grid boundaries? If similar code was written using
built-in arrays, it would typically fail with a segmentation fault, and in any
case, it certainly wouldn’t produce the desired results. However, with MMSP
grid objects, this isn’t a problem; all of the data access operators in MMSP
are cognizant of domain boundaries and always enforce the chosen boundary
conditions.

For the code example above, periodic boundary conditions are used. This is
the default boundary condition in MMSP . A number of other boundary condi-
tions are possible, including Dirichlet, Neumann, and mirror boundaries. Par-
allel processor boundaries are another special type of boundary condition which
is not explicitly set by the user.

2“Optimal” here means that the subdivision is chosen such that it will produce the fewest
number of ghost cells possible, while maintaining as evenly balanced a load as possible.

3.4. THE PROTOTYPICAL MMSP PROGRAM 21

To change the boundary conditions used for a grid, one might use3

grid<2,double> GRID(1,0,100,0,100);

// set x-axis boundary conditions
b0(GRID,0) = Dirichlet; // BC at lower x-axis boundary
b1(GRID,0) = mirror; // BC at upper x-axis boundary

// set y-axis boundary conditions
b0(GRID,1) = periodic; // BC at lower y-axis boundary
b1(GRID,1) = periodic; // BC at upper y-axis boundary

This example demonstrates that the boundary conditions may not only be set
independently for each coordinate axis, but that it’s also possible to indepen-
dently set the conditions at the upper and lower boundaries (within reason).

3.4 The prototypical MMSP program

MMSP was created with the intent that it would be used for mesoscale microstruc-
ture simulation. So let’s look at how we would typically write code to do just
that.

// prototype.cpp
#include"update.hpp"
using namespace MMSP;

int main(int argc, char* argv[])
{

Init(argc,argv);

grid<2,double> GRID(argv[1]);

update(grid,atoi(argv[3]);

output(GRID,argv[2]);

Finalize();
}

In this example, in addition to the usual MMSP boilerplate code, we have a grid
constructor that reads from a file with a name specified by argv[1], a call to
some function called update (more on this in a moment), and a call to output
the grid object to a file with a name specified by argv[2]. After compiling
this program, we would run it with the command line

3Note, as usual, the boundary conditions and “set” functions all belong to namespace MMSP

and must be used in the absence of a using statement.

22 CHAPTER 3. MMSP TUTORIALS

./program initial.PF final.PF 100

or, if we compiled with the MPI libraries, we would run in with something
similar to

mpirun -np 4 program initial.PF final.PF 100

Here, 100 is the intended number of time steps that the update function will
perform.

Now that we have our prototype main() function, let’s look at the update
function. For this example, we would have a new header file named update.hpp,

// update.hpp
#include "MMSP.hpp"
using namespace MMSP;

void update(grid<2,double>& GRID, int steps)
{

grid<2,double> update(GRID);

for (int step=0; step<steps; step++) {
for (int x=x0(GRID); x<x1(GRID); x++)

for (int y=y0(GRID); y<y1(GRID); y++) {
// replace this with a "real" computation...
update[x][y] = GRID[x][y];

}

swap(GRID,update);
ghostswap(GRID);

}
}

Here we define the update function, with its first argument a grid object and
its second argument the number of time steps to perform. The only thing we
should bring special attention to here is the use of the ampersand (&) to force
call-by-reference, which overrides c++’s usual convention of call-by-value (see a
typical introductory text for more).

On the first line within the update function, we create a new grid object,
itself called update. The new grid is created using a constructor with GRID
as its argument. What this does is it generates a grid with the same spatial
extent, number of fields, parallel topology, etc. In other words, the grid called
update is a suitable workspace to store the values of GRID for the next time step
as we compute them.

Next, we have a loop over all time steps. Within this loop we iterate through
the nodes of GRID just as in the example of the previous section. The limiting
values of x and y are obtained by appropriate function calls. At each node, we
would normally perform some meaningful computation to determine the value

3.5. APPLICATION: THE ALLEN-CAHN EQUATION 23

of GRID at the next time step, then store the value in update. Here we simply
copy the value of GRID at this node to update.

After computations are performed at each node, we have two more opera-
tions. First, we swap the data of GRID and update. GRID now contains the new
values, while update, the workspace, contains the old. Next, a function called
ghostswap is called with GRID as its argument. For single processor programs,
the ghostswap function does nothing. For parallel programs, it performs a co-
ordinated series of “ghost” cell data swaps, such that the ghosts associated with
the local portion of GRID are filled with the appropriate data from all neighbor-
ing processors. And again, while it’s not critical to include this line when our
intent is to write a single processor program, it will serve us well to include it
here because it will allow us to easily parallelize the code later.

3.5 Application: the Allen-Cahn equation

Now that we’ve seen much of the basic syntax used in MMSP , let’s apply it
to a few realistic physical problems. The first application we’ll discuss is the
numerical solution of the Allen-Cahn equation, which comes from a well-known
model for order-disorder phase transformations in solids. In this model, the state
of the system is described by a single parameter, φ, which represents the local
atomic ordering. Two distinct, stable variants are represented when φ = −1
and φ = 1. The energy density of the system includes a penalty for states other
than these as well as a term that depends on the gradient of φ. The total energy
of the system takes the form

F =
∫

V

−r
2
φ2 +

u

4
φ4 +

κ

2
|∇φ|2 dV (3.1)

where r, u, and κ are phenomenological constants. The time evolution of φ is
assumed to take the form

dφ

dt
= −M δF

δφ
= −M(−rφ+ uφ3 − κ∆φ). (3.2)

Using a forward Euler time step, the above would be discretized as

φt+∆t = φt −∆tM(−rφt + u(φt)3− κ∆φt). (3.3)

Now, let’s look at an MMSP code representation of the above. Suppose we
aim to write an update function, similar to what was shown in the previous
section. This time, we’ll additionally use the c++ template syntax to write a
code that will work for grid objects of any dimension (and any scalar data
type):

24 CHAPTER 3. MMSP TUTORIALS

template <int dim, typename T>
void update(MMSP::grid<dim,T>& grid, int steps)
{

MMSP::grid<dim,T> update(grid);

double r = 1.0;
double u = 1.0;
double K = 1.0;
double M = 1.0;
double dt = 0.01;

for (int step=0; step<steps; step++) {
for (int i=0; i<nodes(grid); i++) {

double phi = grid(i);
update(i) =

phi-dt*M*(-r*phi+u*pow(phi,3)-K*laplacian(grid,i));
}
swap(grid,update);
ghostswap(grid);

}
}

The update function declaration is equivalent to those shown before, although
the use of template syntax affords us some greater generality. A temporary
grid object called update is declared next, again with template syntax. The
constants r, u, etc. are then declared and initialized. The remainder of the code
performs the desired time steps. At each time step, the following computation
is performed at each node:

double phi = grid(i);
update(i) = phi-dt*M*(-r*phi+u*pow(phi,3)-K*laplacian(grid,i));

The reader will notice that this looks nearly identical to the pseudocode given
above. Here, the c++ math library function pow is used to compute φ3 and the
grid class laplacian operator is used to compute ∆φ.

The Allen-Cahn equation is a fairly simple model, yet it demonstrates many
of the powerful features that MMSP offers. Note that, with only a few unique
lines of c++, we have produced a code that

1. Solves a realistic physical problem with minimal software development.

2. Works for grids of arbitrary spatial dimension.

3. Works for grids of arbitrary scalar data type.

4. Handles boundary conditions with no user intervention.

5. Produces both single processor and parallel code, depending only on com-
piler options.

6. Automatically produces an optimal parallel mesh topology, when required.

3.6. RUNNING THE EXAMPLE CODES 25

3.6 Running the example codes

More to come...

26 CHAPTER 3. MMSP TUTORIALS

Chapter 4

MMSP data classes

4.1 Introduction

Aside from the dimension, the other defining characteristic of a grid object is
the type of data stored at each node or cell. In MMSP , valid grid data may be
either built-in variable types or one of several MMSP data classes. This chapter
presents a more detailed look at using both kinds of data types.

4.2 Common features

MMSP data classes share a number of common features. Most importantly, the
way we interact with them through functions and symbolic operators has been
designed to be as intuitive and self-consistent as possible. In this section, we
list the functions common to all MMSP data classes and built-in types, and in
following sections we describe additional functions specific to each particular
class.

The member functions common to every MMSP data class include

• length()
This function is used to determine the “length” of a given data object.
For example, the length of a scalar is always one, the length of a vector
object is the number of values stored in it, and so on.

• resize(integral value)
This function is used to “resize” data types that contain more than one
value, such as a vector object. When an object inherently has length one
(e.g. scalar objects), this function does nothing at all.

• copy(data object)
The copy function copies all data from the object in the parameter list to
the calling object, i.e. the one that called the function.

27

28 CHAPTER 4. MMSP DATA CLASSES

• swap(data object)
The swap function swaps all data of the object in the parameter list with
the calling object.

• buffer size()
This function returns the number of bytes that would be used if the calling
object were stored in a character buffer.

• to buffer(character buffer)
This function packs the data of the calling object into the character buffer
object given in the parameter list. It also returns the number of bytes
that were used.

• from buffer(character buffer)
This function reads data from the character buffer object given in the
parameter list and writes it to the calling function. It also returns the
number of bytes that were read.

• read(ifstream object)
The read function reads data from the given c++ ifstream object to the
calling data object.

• write(ofstream object)
The write function writes the data of the calling object to the the c++
ofstream object given in the parameter list.

• operator=(data object)
The assignment operator is overloaded for all MMSP data classes to have
the usual “copy” behavior.

Each of these functions may be called in either of two ways: as a class member
function or as a globally defined function. In the first case, calls to a member
function f(...) look like this:

data object.f(parameter list);

In the second case, the global function f is called with a similar syntax, but now
the data object becomes the first function parameter:

f(data object, parameter list);

Globally defined functions have the same behavior as their associated grid mem-
ber function. The user is free to choose either based on convenience or aesthetics.
Symbolic operators are the only member functions that do not have associated
functions.

It is, of course, also possible to use built-in data types such as int, float,
and double anywhere an MMSP data object might be used. The functions listed
above have been redefined to work for all built-in types, but note that because
it’s impossible to write member functions for built-ins, only the global function
calls may be used.

4.3. USING MMSP DATA TYPES 29

4.3 Using MMSP data types

All MMSP data types are defined as template classes. Just as a declaration of a
grid objects requires dimension and data type template parameters, each MMSP
data class object requires a single template parameter.

Most of the time, the user won’t work with MMSP data types directly, but
through nodal data on grids. It’s important to know some of the basic workings
of the MMSP data classes for this reason.

4.3.1 The scalar class

The scalar class is essentially a wrapper for built-in data types. It was defined
primarily for consistency, i.e. as a complement to the
vector class discussed below. MMSP does not define any functions for scalar
objects other than the common functions discussed in the previous section.
However, because a scalar object is an instantiation of a class, it is possible to
use both the member function and global function calling syntax.

// MMSP scalar example

// declaration of a "scalar" object
scalar<double> s;

// use a "scalar" as you would use the corresponding built-in
s = 1.2345;
double square = s*s;
std::cout<<"s = "<<s<<std::endl;

// the following two lines are equivalent
// and both write "1" to standard output
std::cout<<"length = "<<length(s)<<std::endl;
std::cout<<"length = "<<s.length()<<std::endl;

// how a "scalar" is used in a "grid"
grid<2,scalar<int> > GRID(1,0,10,0,10);
for (int x=xmin(GRID); x<xmax(GRID); x++)

for (int y=ymin(GRID); y<ymay(GRID); y++)
GRID[x][y] = x+y;

// this writes the value "1" to standard output
std::cout<<"fields = "<<fields(GRID)<<std::endl;

4.3.2 The vector class

The vector class is meant to be used primarily as a fixed-length container for
nodal data. Just like a usual c or c++ array, vector data is accessed by use of
the subscript operator.

30 CHAPTER 4. MMSP DATA CLASSES

When a vector is used as the data associated with a grid node, its length is
initialized to the number of fields assigned to the grid. Otherwise, a vector’s
length must be initialized with the resize funtion.

If a vector of nonzero length is resized to a greater length, the original
data it contains is preserved. Thus a vector may be used, e.g. to a generate
list even when its final length is not known a priori. Trying to resize a vector
being used as grid data is not reccomended.

// MMSP vector example

// declaration of a "vector"
vector<double> v;

// a "vector" must be resized before use
resize(v,10);

// the following two lines are equivalent
// and both write "10" to standard output
std::cout<<"length = "<<length(v)<<std::endl;
std::cout<<"length = "<<v.length()<<std::endl;

// set and get values with the subscript operator
v[0] = 1.2345;
for (int i=1; i<length(v); i++)

v[i] = 2.0*v[i-1];

// how a "vector" is used in a "grid"
grid<2,vector<int> > GRID(4,0,10,0,10);
for (int x=xmin(GRID); x<xmax(GRID); x++)

for (int y=ymin(GRID); y<ymay(GRID); y++)
for (int i=0; i<fields(GRID); i++)

GRID[x][y][i] = x+y+i;

// this writes the value "4" to standard output
std::cout<<"fields = "<<fields(GRID)<<std::endl;

4.3. USING MMSP DATA TYPES 31

4.3.3 The sparse class

The MMSP sparse data class contains vector-like data, but rather than main-
taining a fixed length of data, sparse objects grow as values are set by the
user. sparse data is most useful in situations where a large number of fields
are defined, but only a small number of them have values that differ from some
“nominal” value.

// MMSP sparse example

// declaration of a "sparse"
sparse<double> s;

// the following two lines are equivalent
// and both write "0" to standard output
std::cout<<"length = "<<length(s)<<std::endl;
std::cout<<"length = "<<s.length()<<std::endl;

// all of the following lines
// write "0" to standard output
for (int i=0; i<10; i++)

std::cout<<"s["<<i<<"] = "<<s[i]<<std::endl;

// use of the "set" function
set(s,0) = 1.2345;
set(s,1) = s[0];
set(s,2) = s[1];

// now the length is "3" ...
std::cout<<"length = "<<length(s)<<std::endl;

// ... and we can output only those values that are stored
// Note that both calls to "cout" produce the same output
for (int i=0; i<length(s); i++) {

int ind = index(s,i);
double val = value(s,i);
std::cout<<"s["<<ind<<"] = "<<val<<std::endl;
std::cout<<"s["<<ind<<"] = "<<s[ind]<<std::endl;

}

// how a "sparse" is used in a "grid"
grid<2,vector<int> > GRID(0,0,10,0,10);
for (int x=xmin(GRID); x<xmax(GRID); x++)

for (int y=ymin(GRID); y<ymay(GRID); y++)
for (int i=0; i<10; i++)

set(GRID[x][y],i) = x+y+i;

32 CHAPTER 4. MMSP DATA CLASSES

The sparse data class achieves its function by storing index/value pairs as they
are set by the user. Obviously, this requires more memory than storing a single
value, so that there’s some point where, for a small enough number of fields,
using sparse data becomes impractical.

The subscript operator applied to sparse data returns the value associated
with the index given as the operator’s argument. If the value for the given index
has not been set by the user, the subscript operator returns zero.

The length function applied to a sparse object returns the number of values
that have been set. The user may iterate through only those values that have
been set by using the value and index functions. A synopsis of the functions
unique to the sparse data type follow.

• set(integral value index)
This function set the value of a particular index/value pair of a sparse
object.

• value(integral value i)
This function returns the value of the ith index/value pair of a sparse
object.

• index(integral value i)
This function returns the index of the ith index/value pair of a sparse
object.

4.4 Using built-in data types

4.5 Writing new data classes

Chapter 5

The grid class

The MMSP base class grid is defined in the header MMSP.grid.hpp. The de-
rived template classes grid1D, grid2D, and grid3D provide the base for the high
level grid objects associated with various simulation methods. The template
parameters for each grid object are a point data structure and a fundamental
numeric type. The grid objects contain a large number of inherited methods
(member functions) that perform common tasks such as file I/O, data storage
and retrieval, etc. Member data for the grid classes determine the grid size,
boundary conditions and point spacing along each coordinate axis. High level
grid objects usually have a name that indicates both their intended use as well
as their dimensionality, e.g. PFgrid3D and MCgrid2D. These are the grid ob-
jects that are used in performing simulations or other computations. Detailed
information about each existing grid class is given in the reference section of this
page. See also the source distribution. MMSP grid classes are designed so that
programming with them is as intuitive as possible. For example, data can be ac-
cessed by subscript operators in exactly the same way we would use data stored
in a subscripted array // First create a grid object. PFgrid2D grid(100,100,2);

// Assign a value to the phase field grid. grid[10][20][1] = 1.0;
// Use a value from the grid in a computation. float value = grid[10][20][1];

Because of this, C/C++ code that performs computations using ”hard-coded”
arrays automatically works for the corresponding MMSP grid object. This
makes it trivial to insert MMSP grid objects into existing grid generation, sim-
ulation, or analysis code. Each grid object also provides a neighbor() function
that returns a grid data structure using coordinates relative to a given position
(x,y[,z]) // First create a grid object. MCgrid2D grid(100,100);

// Assign a value to the Monte Carlo grid. grid[10][20] = 5;
// Access the value using the neighbor() function. int spin = grid.neighbor(9,22,1,-

2); The neighbor function automatically accounts for the grid boundary condi-
tions set by the user. See the next subsection for more details on programming
with the grid classes. Finally, let’s consider using grid objects in a parallel com-
puting setting. In single processor programs, we typically create a single grid
object within the main() function. This grid object is considered to be the en-

33

34 CHAPTER 5. THE GRID CLASS

tire simulation domain. In parallel programs, however, the grid object declared
within main() is a subgrid of a larger, global simulation domain. MMSP can
automatically decompose (or recompose) a global grid object into local subgrid
”slabs” with cuts perpendicular to the x axis, a method which has a consis-
tent (and simple) implementation regardless of grid dimension. MMSP allows
the user to chose the number of ghost cells retained in each subgrid, and the
boundary conditions of the global grid object are satisfied when the neighbor()
function is used. The implementation of parallel grid functionality is contained
within a separate header MMSP.grid.parallel.hpp for the convenience of users
without a local MPI distribution.

5.1 Introduction

The grid class is the base class for all higher level grid classes...
A number of points about the grid class and its member functions are useful

in the following.

• Most grid functions may be called in either of two ways: as a class member
function or as a global friend function. In the first case, calls to a grid
member function f(...) look like this:

grid object.f(parameter list);

In the second case, the global friend function f is called with a similar
syntax:

f(grid object, parameter list);

Global friend functions have the same behavior as their associated grid
member function. The user is free to choose either based on convenience
or aesthetics. Note that the grid object now becomes the first argument to
the function, while the remainder of the parameter list is unchanged. The
only functions that don’t follow this convention are symbolic operators,
e.g. the subscript operator:

grid object[x][y] = rvalue;
lvalue = grid object[x][y][z][index];

Symbolic operators are grid member functions that do not have associated
friend functions.

•

•

•

5.2. GRID CLASS MEMBER FUNCTIONS 35

5.2 grid class member functions

5.2.1 Constructors

grid(int fields, int x0, int x1, ...);
grid(int fields, int min[dim], int max[dim]);
grid(const grid& GRID);
grid(char* filename);

5.2.2 Subscripting

5.2.3 File I/O

5.2.4 Buffer I/O

5.2.5 Accessing grid parameters

int x0(const grid& GRID, int i);
int x1(const grid& GRID, int i);
int x0(const grid& GRID);
int x1(const grid& GRID);
int y0(const grid& GRID);
int y1(const grid& GRID);
int z0(const grid& GRID);
int z1(const grid& GRID);

5.2.6 Setting grid parameters

5.2.7 Utility functions

5.2.8 Parallel communications

5.2.9 Multigrid functionality

5.3 grid class examples

5.3.1 Constructing a grid

#include"MMSP.grid.hpp"

int main(int argc, char* argv[])
{

MMSP::Init(argc,argv);

MMSP::grid<1,double> GRID(1,0,100);

MMSP::Finalize();
}

36 CHAPTER 5. THE GRID CLASS

#include"MMSP.grid.hpp"

int main(int argc, char* argv[])
{

MMSP::Init(argc,argv);

char* filename = argv[1];

MMSP::grid<2,double> GRID(filename);

MMSP::Finalize();
}

#include"MMSP.grid.hpp"

int main(int argc, char* argv[])
{

MMSP::Init(argc,argv);

MMSP::grid<3,MMSP::vector<double> > GRID();

MMSP::Finalize();
}

5.3.2 Initializing a grid

5.3.3 Setting up grid parameters

5.3.4 Accessing grid parameters

5.3.5 Reading to and writing from files

5.3.6 Using grid in a parallel program

Chapter 6

Specialized grid classes

6.1 Introduction

6.2 CAgrid

6.3 FDgrid

6.4 MCgrid

6.5 PFgrid

6.6 sparsePF

37

	Introduction
	The MMSP concept
	What MMSP does
	What MMSP doesn't do
	What MMSP requires
	Terms of use

	Getting started with MMSP
	Download
	Installation
	Setup
	Support

	MMSP tutorials
	A quick tutorial
	The Hello MMSP! program
	Compiling and running Hello MMSP!

	A grid class example
	More examples
	Accessing node data
	File input and output
	Boundary conditions

	The prototypical MMSP program
	Application: the Allen-Cahn equation
	Running the example codes

	MMSP data classes
	Introduction
	Common features
	Using MMSP data types
	The scalar class
	The vector class
	The sparse class

	Using built-in data types
	Writing new data classes

	The grid class
	Introduction
	grid class member functions
	Constructors
	Subscripting
	File I/O
	Buffer I/O
	Accessing grid parameters
	Setting grid parameters
	Utility functions
	Parallel communications
	Multigrid functionality

	grid class examples
	Constructing a grid
	Initializing a grid
	Setting up grid parameters
	Accessing grid parameters
	Reading to and writing from files
	Using grid in a parallel program

	Specialized grid classes
	Introduction
	CAgrid
	FDgrid
	MCgrid
	PFgrid
	sparsePF

