

MBuilder Manual

Toolkit for 3D Synthetic Microstructure Generation

Joseph C. Tucker

May 25, 2011

	 2	

	 3	

Contents

1 Introduction

1.1 History of MBuilder
1.2 What MBuilder does
1.3 What MBuilder doesn’t
1.4 Software requirements
1.5 Terms of use

2 Getting started with MBuilder

2.1 Download
2.2 Installation
2.3 Setup
2.4 Support

3 MBuilder tutorials

3.1 Quick tutorial
3.2 Single run
3.3 Feedback loop
3.4 Elongated
3.5 2D
3.6 Layered
3.7 Bimodal
3.8 Particles
3.9 Twins
3.10 Skewness
3.11 Truncation
3.12 Coarsened
3.13 Matrix Phase
3.14 Faceted

4 File input and output

5 Toolkit

5.1 Recursive sampler
5.2 Elliptical foam
5.3 Cellular automaton
5.4 Unique grain 3D

	 4	

5.5 Monte carlo
5.6 3D enumerate
5.7 Insert twins
5.8 Voxel convert

	 5	

Chapter 1

Introduction

Microstructure Builder (MBuilder) is a strategy to construct simulated 3D polycrystalline
materials. The input is typically grain size and shape data as obtained from orthogonal
images (optical or SEM) or 3D datasets. The output is a 3D voxel structure that matches the
size and shape statistics provided at input. The voxel structures can be used directly as input
to Monte Carlo simulations or can be converted to mesh structures for use in FE structural
analysis.

The goal of MBuilder is to provide a simple, flexible, and modular tool to construct 3D
synthetic microstructures. Simple in that the package requires minimal inputs and requires
no coding. Flexible in that it can produce a wide range of microstructures, including: 2D,
mono-disperse, multimodal, twinned, coarse, refined, and “fat”-tailed. Modular in that it
accepts standard statistical parameters as inputs and outputs formats used for surface
meshing, FFT, and peridynamics. Other considerations are portability (MBuilder has been
tested on Mac OS, Linux/Unix, and Windows (Cygwin)).

1.1 History of MBuilder

MBuilder started as a collaboration between David Saylor at Carnegie Mellon University
(CMU) and Joe Fridy at the Alcoa Technical Center, with help from Tony Rollett, Bassem
El-Dasher and Kyung-Jun Kung (all at CMU). It was supported by the Mesoscale Interface
Mapping Project (MIMP) under the NSF-supported Materials Research Science and
Engineering Center at CMU (mimp.materials.cmu.edu). Various individuals have
contributed to MBuilder over the years, including Chris Roberts, Abhijit Brahme, Sukbin Lee
and Steve Sintay. Programs that have supported it include the Computational Materials
Science Network (CMSN), DARPA under the SIPS program and the Commonwealth of
Pennsylvania.

	 6	

1.2 What MBuilder does

In many ways MBuilder is a turnkey, with a few caveats. If your goal is to produce a
synthesized material, i.e., a material based off statistics from EBSD or 3D datasets, MBuilder
is the tool for you. If you are making a simple theoretical material with no exotic grain size
distribution, MBuilder will certainly be helpful. If you want to create many instantiations of
a microstructure, MBuilder can do that.

1.3 What MBuilder doesn’t

MBuilder is not a black box. And it requires some thought and expectation for what you are
looking to achieve. If you just throw in random inputs, chances are MBuilder won’t work.
MBuilder is currently serial and with that has size limitations. Much effort has been made to
have the MBuilder experience involve little to no learning curve.

1.4 Software Requirements

The user need not be proficient in any programming language. MBuilder is operated by text
control files. The basic software requirements include:

 c, c++, and fortran (77,95) compilers
 boost
 cmake
 git (or just download *.tgz)
 paraview (for visualization)

1.5 Terms of use

MBuilder is made freely available for anyone performing non-profit scientific research; those
interested in using MBuilder for other purposes should contact us first. If you use MBuilder
in your research, please spread the word. Send us modifications that you would like to see
incorporated into the package and give us feedback!

	 7	

Chapter 2

Getting started with MBuilder

The following sections provide the necessary information for new users to obtain and set up
MBuilder. This involves downloading a source code archive, unpacking it, and configuring.
Developers or those interested in maintaining an up-to-date version of the code should
consider checking out a copy from the git repository.

2.1 Download

The MBuilder source code is hosted online at MatForge. From the main MatForge site,
users should navigate to the Microstructure Builder home page and choose the appropriate
links under the section Download, as these links are set up to point to the latest MBuilder
release. Archives containing the MBuilder source code are provided in the usual Linux
tarball convention (with file extension .tgz).

Alternatively, a user may choose to check out a copy from the git repository (it is public
read-only). This requires the git version control software to be installed on the target
machine, as well as a working internet connection. From the command line type:

 git init
 git pull ssh://code.matforge.org/mbuilder

If the checkout is successful, then there is no need to perform the steps for installation
described below, and the user should move on to setup (unless using Windows).

Having a local copy of MBuilder makes it simple to keep your code up-to-date. From the
root folder, simply type:

 git pull ssh://code.matforge.org/mbuilder

to update a working copy with the latest version of the MBuilder source code.

	 8	

2.2 Installation

After an appropriate source code archive is obtained as described above, the next step is to
install MBuilder. This should be as simple as unpacking the archive. The following
paragraphs provide platform specific instructions for a local installation.

Mac OS Local installation for Mac users should simply involve unpacking the archive.
After downloading the archive file, move it to the directory where you want MBuilder to
reside, making sure that you have read access to the file as well as write access to the
directory. Then issue a command to unpack the archive:

 tar zxf mbuilder_20May11.tgz

This will unpack the contents of the archive folder. Next type:

 ls

which should indicate that folders such as Source/, Scripts/, etc. have been created.
If either command fails or the folders are not created, check the tar documentation.

Linux/Unix Linux users will follow much of the same procedure as Mac users, so it is
advisable to read the previous section on Mac OS installation.

Windows For those who insist on using Windows, it is still possible to use MBuilder.
The preferred way to do this is to use the cygwin environment. To use cygwin with
MBuilder, it is necessary that appropriate packages, these are:

 gcc (the GNU compiler)
 make (the GNU make utility)
 automake
 boost
 cmake
 git (if you want)

These are optional packages that must be chosen manually during installation. If cygwin has
been installed properly, MBuilder may be installed by following the steps described above
for Mas OS installation.

2.3 Setup

Once MBuilder has been installed, from the MBuilder root directory type:

 mkdir Build

	 9	

 cd Build

This will create a Build directory to separate the executables from the source code and enter
this Build directory. Next, type:

 ccmake ../

which launches the cmake utility. To configure your makefile enter:

 c

If there were no errors then a generate option will appear. Note: Depending on the method
of boost installation, the Linux user will likely have to specify the path of the boost include
directory by entering:

 t

Then scroll down to the boost include directory section and enter the absolute path to
boost. Then attempt to configure again. Note: The cygwin user will need to install g95
(fortran 95 compiler) then enter the absolute path to g95 into the cmake utility in the same
fashion as the boost path described above. If the configuration was successful, a generation
option will appear, type:

 g

If the cmake procedure was successful, a Makefile should reside in your Build directory.
If this is the case, type:

 make

The screen should display progress feedback as the source compiles and links. If the make
procedure succeeded, a Bin directory will be created in your Build directory. Navigate to the
Bin directory, which should contain executables such as mbuilder, singlerun, etc.
Then type:

 ./RUN_FIRST

which will place all of the control files, temporary folders, and output directories in the
correct location.

2.4 Support

MBuilder is not commercial code and there are no guarantees or claims, stated or implied,
pertaining to its fitness for any purpose. MBuilder is intended solely for use in non-profit
scientific research. In spite of this, the MBuilder team is devoted to producing a quality

	 10	

product that addresses the needs of the scientific community. Please do not hesitate to
contact our development team with any questions or suggestions. Contact information can
be found on the MBuilder page at MatForge.

	 11	

Chapter 3

MBuilder tutorials

The following sections present a few short tutorials on running MBuilder. The user will
need the use of a basic text editor such as emacs, vi, aquamacs, gedit. etc.

3.1 Quick tutorial

Because every good interface tutorial starts with a “Hello World!” example program, we’ll do
the equivalent of that with MBuilder – generate a 3D synthetic structure with a mono-
disperse grain size distribution.

Within your Bin directory use a text editor to open singlerun_controlfile.txt.
If using emacs, the command will be:

 emacs singlerun_controlfile.txt

The singlerun_controlfile.txt should look something like this:

scale 1
dimension 100 100 100
overlap 1.05
periodic false
burn_fraction 0.0
ellipsoid_mean 0.08
ellipsoid_stdev 0.0
min_grainsize 0.0
lognormal_threshold 100
num_twins 0
MC_steps 0

	 12	

A description of the parameters is provided in a later tutorial, but for now, adjust all the
parameters to read as above. Next, open ellipsoid_controlfile.txt in the text
editor of your choice, which should look like this:

x_incline_min 0
x_incline_max 360
y_incline_min 0
y_incline_max 360
z_incline_min 0
z_incline_max 360
BoA 1
CoA 1
axes_randomizer 0
mode_2_frac 0.0
A2oA 1.0
B2oA2 1
C2oA2 1

Again, a description of these parameters will be given later, just make yours look like this. At
this point we are ready to run MBuilder. Execute:

 ./singlerun

which will begin MBuilder. During the process, lots of feedback is produced on the screen.
When the program is done, the command prompt will return indicating that MBuilder has
completed. Since this is the quick tutorial, we’ll save the output hierarchy and file types for
later and provide you with some visual satisfaction of your achievements. Open Paraview
then <File>/<Open>. Your 3D microstructure will be located according to this path:
MBUILDER_ROOT_DIR/Build/Bin/OUTPUT_FILES/new_output_MMDDYY_
v# and is called grains-renum.vti.	 	 Select it, then <Apply> which should make the
outline of your 100x100x100 cube appear. Then the dropdown tab displaying <Outline>,
change to <Surface> which should create a white cube. Finally, the dropdown tab
displaying <Solid Color>, change to <ID>. You should now be looking at your 3D
synthetic microstructure.

3.2 Single Run

The option used in the quick tutorial was single run. The alternative described in the next
section is the feedback loop. The single run option executes exactly one iteration of
mbuilder. It is governed by two control files:	 singlerun_controlfile.txt and
ellipsoid_controlfile.txt. Let’s start with the former.

The singlerun_controlfile.txt contains 11 parameters which are described
here:

	 13	

scale The scale parameter changes the voxel-to-micron (or whatever unit
you like) ratio. Setting the scale to one makes the voxel-to-micron ratio = 1. Unless the user
is importing fitted ellipsoids from EBSD or 3D data, the scale parameter should always be
set to one and other means are used to fit large or small grain sizes into a workable domain
for MBuilder.

dimension The dimension parameter dictates and length, width, and height (in
voxels) of your volume element. The user must use some common sense in determining
their grain size inputs relative to the dimensions of the simulation domain. As mentioned
earlier, MBuilder can only generate structures up to a certain size. That maximum size is
influenced by many of the other parameters. If the user’s goal is to generate the largest
structure possible, the quick tutorial settings is their best shot. The largest structure
successfully generated with MBuilder was among 300x300x300. However, the if user is
seeking a grain size distribution with a large standard deviation or with a small mean grain
size (say < 6 voxels (sphere equivalent radius)) then the maximum dimension will shrink
considerably.

overlap The overlap parameter is used in seeding the ellipsoids into the
simulation domain. The default value is set to 1.05 which allows slight overlap which is
beneficial for space filling since the goal is to turn the ellipsoids into grains. The algorithms
in MBuilder are optimized for an overlap value of 1.05, but if the user absolutely needs to
attempt for more faceted grains, the value could be increased. Note that more faceted grains
result from lower standard deviations.

periodic Periodicity is used in MBuilder to simulate bulk characteristics. If
periodicity is enforced, ellipsoids and grains are allowed to be continuous over boundaries,
this includes all the placement, grid, and growth algorithms. The converse is true for not
enforcing periodicity. The result of enforcing periodicity is usually more “island” grains or
grains with only one nearest neighbor. Setting periodic to true is usually done for purely
theoretical structures that are not modeling a real material. It is recommending that
periodicity not be enforced when attempting to synthesize actual materials.

burn_fraction The burn fraction parameter determines what percentage of the
voxels with be filled with grain IDs in the final structure. If a number less than one is
chosen, then voxels with remain unoccupied. This feature can be used to represent
secondary phases, voids, particles, microconstituents, etc. If the user wants a dense
structure, set the burn fraction equal to 1.

ellipsoid_mean The ellipsoid mean parameter is the µ (log-normal mean) used to
generate a log-normally distributed random variable which is used to define the semi-axes of
the ellipsoids. To give the user some expectation, think µ < 0.05 gives thousands of grains
and µ > 0.05 gives hundreds of grains (for a 100x100x100 domain). This of course will be
affected by the other input parameters.

ellipsoid_stdev The ellipsoid standard deviation parameter is the

€

σ (log-normal
standard deviation) used to generate a log-normally distributed random variable which is
used to define the semi-axes of the ellipsoids. As a general rule, 2

€

σ < µ and

€

σ < 0.04 if the
user hopes to impose any sort of realistic minimum threshold. Log-normal standard

	 14	

deviations that violate these rules are certainly “exotic” grain size distributions and MBuilder
will have trouble producing a structure with the desired statistics, if at all.

min_grainsize The minimum grain size sets a threshold on the small grains in the
simulation domain. The algorithm will “erode” smaller grains away, replacing their ID with
its majority nearest neighbor parent grain. Think of this parameter as the minimum
allowable semi-axis of an ellipsoid. So a reasonable value is 0.015 for a log-normal mean of
0.075, e.g.

lognormal_threshold The log-normal threshold sets a truncation on the log-normal
distribution. This applies to the upper tail (min_grainsize affects the lower tail). As opposed
to “eroding” the large grains away, this algorithm prevents ellipsoids larger than the
truncation from being placed in pre-processing. If the user wishes to use no truncation,
enter a large value such as 100. A reasonable value is 0.15 for a log-normal mean of 0.075,
e.g.

num_twins This determines the number of twins inserted into the structure.
Note that if the user attempts to insert too many twins (say >500, again depends), they will
break the code. A twin will never be inserted into a grain with a sphere equivalent radius < 5
voxels, so if the user has a mean < 0.05 it is not recommended to attempt to many twin
insertions. The twins are inserted randomly. One of the four variants of <111> is chosen
at random and the corresponding grain orientation for the twin is calculated by rotating the
orientation of the parent grain 60° about that <111> variant.

MC_steps The number of Monte Carlo steps used in the Potts Model. This
parameter is used to provide more “realistic” grain boundary curvature. A good starting
value = 10. Note that it will be periodic or non-periodic based on the periodicity selection.
The user should be warned that if they are trying to embody anisotropy (e.g. rolling), this is
quickly lost in the Potts model.

ellipsoid_controlfile.txt is identical for both the single run and feedback
loop options. Its contents are described here:

x_incline_min The minimum inclination angle of the ellipsoid semi-axis in the x-
direction (in degrees). This value is most commonly set to zero unless an off-axis constant is
desired, e.g. 45 degrees.

x_incline_max The maximum inclination angle of the ellipsoid semi-axis in the x-
direction. If the user is seeking a random axis orientation distribution, the value should be
set to 360 paired with x_incline_min set to 0, accordingly with the other two directions.

y_incline_min Same as x in the y-direction.

y_incline_max Same as x in the y-direction.

z_incline_min Same as x in the z-direction.

	 15	

z_incline_max Same as x in the z-direction.

BoA b over a is the ratio of the semi-axis b over the semi-axis a. In,
MBuilder, one log-normally distributed random variable is generated per ellipsoid and all
three semi-axes are defined from it. More specifically, the semi-axis a is first defined then b
and c are based on the ratios defined in the control file. For instance, if the user wants
elongated grains, there are three main variants: oblate (cigars), prolate (pancakes), and
scalene. For “cigars”, the user will set BoA > 1. For “pancakes”, the user will set BoA < 1.
For scalene, the user will change the next parameter CoA and BoA so that all three semi-
axes are unequal.

CoA c over a is the ratio of the semi-axis c over the semi-axis a. All the
same rules apply as for BoA.

mode_2_frac This parameter sets the number fraction of a second mode for a
bimodal distribution. If the user wants only one mode then set it to 0.0. If the user e.g.
wants 30% second mode then set mode_2_frac = 0.3. The following parameters control the
second mode ellipsoids.

axes_randomizer This parameter is used the introduce “play” into the semi-axes. This
is a cleanup feature. For instance, if the user is generating an equiaxed structure, then they
may want to set this parameter to 10 in order to make the final structure more visually
pleasing. This allows the axes to vary ±10%. It is not recommended to set the axis
randomizer greater than 20 because this will start to distort the grain size distribution.

A2oA This is the ratio of a semi-axis a of the second mode to the semi-axis
a of the first mode. A value of one means that they are equal. If the user wants larger grains
in the second mode they should set A2oA > 1.

B2oA2 Same as BoA but for the second mode.

C2oA2 Same as CoA but for the second mode.

3.3 Feedback loop

The feedback loop iterates through “singlerun’s” of MBuilder. The control file,
mbuilder_controlfile.txt contains many of the same parameters as the control
file for the single run control file singlerun_controlfile.txt. However, the
input statistics now are targets for MBuilder to iteratively match. An itemized description of
the contents of mbuilder_controlfile.txt is below:

scale Same as in singlerun_controlfile.txt.

dimension Same as in singlerun_controlfile.txt.

	 16	

overlap Same as in singlerun_controlfile.txt.

periodic Same as in singlerun_controlfile.txt.

burn_fraction Same as in singlerun_controlfile.txt.

mean The mean is the first input that is a target for MBuilder to try and
match. It is the mean sphere equivalent radius of the grain size distribution that the user
wants. If mean is set to 7 e.g. MBuilder will iteratively attempt to match the grain size
distribution to a mean sphere equivalent radius of 7 voxels. It is suggested that mean not be
set less than 4 since this will produce grains too close to the resolution of voxels. On the
other, end if the user is using a 100x100x100 domain, they should not set the mean greater
than around 18 at most, since this size will approach a grain size equal to the simulation
domain. These indicated values are extremes, to achieve satisfactory results, it is
recommended to stay away from these limits if possible.

stdev Just like the mean parameter, stdev is the target sphere equivalent
radius standard deviation target that MBuilder will try to match (in voxels). If the standard
deviation is set to zero then the user should expect an equiaxed structure. The standard
devation should not be set greater than 4 if the user expects to yield consistent results.

min_grainsize The minimum grain size represents the smallest grain (in sphere
equivalent radius) that the final structure will contain. This parameter is an opportunity to
set a limit on data collection, e.g. if it is set at 3.5, then MBuilder will remove any grain less
than 180 voxels in volume. The user should not set this value too high unless they seek a
matrix phase (see later)

max_grainsize The maximum grain size is the largest grain (in sphere equivalent
radius) that the final structure will contain. This parameter is used to embody upper tail
departure from a log-normal. If a log-normal distribution is predicting too many large
grains, a threshold should be enforced to cutoff the top of the distribution. If the user
desires no limit on maximum grain size, then this parameter should be less to something
large, e.g. 100.

num_twins Same as in singlerun_controlfile.txt.

MC_step Same as in singlerun_controlfile.txt.

epsilon The tolerance that MBuilder will iteratively match the mean, standard
deviation, and (possibly) skewness. If epsilon = 0.05 then it will attempt to match the
aforementioned parameters to within 5%. It is not recommended to go below 0.05 because
of the inherent randomness involved in MBuilder.

max_iters The maximum number of iterations that MBuilder will try until it
gives up and outputs the final iteration.

	 17	

min_suceess_iters The number of successful iterations MBuilder will continue until it
reaches. This is useful if the user needs multiple instantiations for their models.

skew_on A logical true or false which decides whether MBuilder should
attempt to match skewness in addition to the mean and standard deviation.

skew The value of skewness in sphere equivalent radius that MBuilder tries
to match. Using this feature is effective in getting MBuilder to accurately match the tails of
the grain size distribution. The user should be aware that using this function may result in
MBuilder taking considerably longer to match all the desired statistics.

3.4 Elongated

Elongated grains are effective for representing rolled grain size distributions. This section
displays the two control files needed to produce an elongated structure within the singlerun
framework. Descriptions of the important control file alterations are provided along with
suggestions for further changes if a slightly different result is desired.

To produce a generic elongated grain size distribution to embody things like rolling
anisotropy, the two control file should look like this:

singlerun_controlfile.txt

scale 1
dimension 100 100 100
overlap 1.05
periodic true
burn_fraction 0.0
ellipsoid_mean 0.08
ellipsoid_stdev 0.0
min_grainsize 0.025
lognormal_threshold 100
num_twins 0
MC_steps 0

Notable here is the periodic is set true since it is assumed to be a purely theoretical structure.
The mean is set to 0.08 which should end up with ~130 grains with the given set of
parameters. Increase the mean for less grains, visa versa. An equiaxed grain size distribution
is assumed in the non-elongated directions, so the standard deviation = 0.

ellipsoid_controlfile.txt

x_incline_min 0
x_incline_max 0
y_incline_min 0

	 18	

y_incline_max 0
z_incline_min 0
z_incline_max 0
BoA 3
CoA 3
axes_randomizer 10
mode_2_frac 0.0
A2oA 1.0
B2oA2 1
C2oA2 1

All of the incline parameters are set to 0, making the axis orientation constant and on-axis.
BoA = 3 which makes the b semi-axis three times greater than the other semi-axes which
will produce the “cigar” ellipsoids and elongated grains. If the user wants more elongation,
they should increase BoA. A picture of the elongated structure is shown here:

To produce “pancake” grains the same two control files are used, except CoA is set to 3.
The structure should have ~50 grains and is shown here:

3.5 2D

	 19	

Creating a 2-dimensional structure in MBuilder is as simple as setting one of the dimensions
equal to 1. The pair of control files is shown below with explanations of the parameter
selections where appropriate.

singlerun_controlfile.txt

scale 1
dimension 100 100 1
overlap 1.05
periodic false
burn_fraction 0.0
ellipsoid_mean 0.13
ellipsoid_stdev 0.0
min_grainsize 0.025
lognormal_threshold 100
num_twins 0
MC_steps 0

The mean is made relatively large here to better illustrate the 2D behavior.

ellipsoid_controlfile.txt

x_incline_min 0
x_incline_max 360
y_incline_min 0
y_incline_max 360
z_incline_min 0
z_incline_max 360
BoA 1
CoA 1
axes_randomizer 0
mode_2_frac 0.0
A2oA 1.0
B2oA2 1
C2oA2 1

The axes randomizer is set to zero in order to get the most equiaxed grains as possible.

The result should have ~20 grains and is displayed here:

	 20	

3.6 Layered

To produce a layered structure such as that seen below, a run of the 2D tutorial is done 10
times then the user must perform some surgery on the vti file. If the users are unfamiliar
with the vti format, they should consult vtk/vti documentation.

3.7 Bimodal

The procedure to produce a bimodal distribution involves only changing parameters in
ellipsoid_controlfile.txt. However, both control files used to generate the
structure are shown below (within the singlerun framework).

singlerun_controlfile.txt

scale 1
dimension 100 100 100
overlap 1.05

	 21	

periodic false
burn_fraction 1.0
ellipsoid_mean 0.12
ellipsoid_stdev 0.0
min_grainsize 0.01
lognormal_threshold 100
num_twins 0
MC_steps 0

The minimum is made relatively small because the second mode is going to represent
needle-like grains, making sure they will not be thresholded out. Periodicity is false so that
the needle grains are not allowed to grow across boundaries, resulting in many island grains.

ellipsoid_controlfile.txt

x_incline_min 0
x_incline_max 360
y_incline_min 0
y_incline_max 360
z_incline_min 0
z_incline_max 360
BoA 1
CoA 1
axes_randomizer 10
mode_2_frac 0.7
A2oA 0.33333
B2oA2 18
C2oA2 1

Here, the second mode is set to a number fraction of 0.7 meaning that the structure will
have 70% of the second mode. The first mode is equiaxed. The second mode has two
semi-axes ~1/3 the length of the first mode semi-axes and the third semi-axis 5 times the
length of the mode one semi-axes, giving a needle grain result.

	 22	

3.8 Particles

Particles can be represented in MBuilder in two different ways. First, through using a
bimodal distribution and making the second mode much smaller than the first and having
that second mode represent the particles. An example is shown here:

singlerun_controlfile.txt

scale 1
dimension 100 100 100
overlap 1.05
periodic false
burn_fraction 1.0
ellipsoid_mean 0.14
ellipsoid_stdev 0.00
min_grainsize 0.0
lognormal_threshold 100
num_twins 0
MC_steps 0

The mean is made large so as to distinguish the smaller mode two. The minimum is set to
zero since the second mode a approaching voxel resolution.

ellipsoid_controlfile.txt

x_incline_min 0
x_incline_max 360
y_incline_min 0
y_incline_max 360
z_incline_min 0
z_incline_max 360
BoA 1
CoA 1
axes_randomizer 0
mode_2_frac 0.5
A2oA 0.2
B2oA2 1
C2oA2 1

The number fraction is set to 50% since it is the volume of the second mode, it will be much
smaller than the first.

	 23	

The second way to represent particles is to use the burn fraction option in the control file to
partially assign voxels with grain IDs. An example of this is:

singlerun_controlfile.txt

scale 1
dimension 100 100 100
overlap 1.05
periodic true
burn_fraction 0.95
ellipsoid_mean 0.12
ellipsoid_stdev 0.0
min_grainsize 0.0
lognormal_threshold 100
num_twins 0
MC_steps 0

The burn fraction is set to 0.95 so some of the voxel remain unassigned to represent
particles.

ellipsoid_controlfile.txt

x_incline_min 0
x_incline_max 360
y_incline_min 0
y_incline_max 360
z_incline_min 0
z_incline_max 360
BoA 1
CoA 1
axes_randomizer 10
mode_2_frac 0.0
A2oA 1
B2oA2 1

	 24	

C2oA2 1

3.9 Twins
Inserting twins is as simple as changing the num_twins parameter from zero to a value
greater than zero. Twins are inserted randomly. Note that if the user attempts to insert an
inordinate number of twins, MBuilder will not work.

singlerun_controlfile.txt

scale 1
dimension 100 100 100
overlap 1.05
periodic false
burn_fraction 1.0
ellipsoid_mean 0.12
ellipsoid_stdev 0.0
min_grainsize 0.025
lognormal_threshold 100
num_twins 100
MC_steps 0

The number is twins is set to 100. Periodic is false since it is assumed twins are inserted to
represent a real material.

ellipsoid_controlfile.txt

x_incline_min 0
x_incline_max 360
y_incline_min 0
y_incline_max 360
z_incline_min 0
z_incline_max 360
BoA 1

	 25	

CoA 1
axes_randomizer 10
mode_2_frac 0.0
A2oA 1
B2oA2 1
C2oA2 1

3.10 Skewness

Skewness is operated within the feedback loop framework. Simply set skew_on = true
in mbuilder_controlfile.txt and provide a target skew value.

Example coming soon.

3.11 Truncation

As mentioned in the max_grainsize and lognormal_threshold parameter descriptions,
truncating the upper tail of the log-normal distribution prevents too-large ellipsoids from
being generated and turning into too-large grains. Here is a table to give perspective on this
truncation value (for mean = 4.69, stdev = 2.37):

	 26	

The values in the first column belong to max_grainsize which is in
mbuilder_controlfile.txt. To scale them into
singlerun_controlfile.txt divide by 100.

3.12 Coarsened

Using the Potts Model to coarsen the microstructure is an effective ways to improve the
grain boundary curvature. An effective starting point is 10 MC_steps which is what is
demonstrated below with a before and after and accompanying control file (for the after
instantiation).

singlerun_controlfile.txt

scale 1
dimension 100 100 100
overlap 1.05
periodic true
burn_fraction 1.0
ellipsoid_mean 0.14
ellipsoid_stdev 0.0
min_grainsize 0.025

Truncation	
ln(…)	

%	 Lognormal	
Distribution	 1	 in	 …	 Largest	 Ellipsoid	 Sphere	

Equivalent	 Radius	

1.20	 5.50x10-‐9	 1.82x108	 20	

1.18	 2.79x10-‐7	 3.59x106	 18	

1.16	 9.17x10-‐6	 109,107	 16	

1.14	 1.92x10-‐4	 5203	 14	

1.12	 2.52x10-‐3	 396	 12	
	

1.10	 2.04x10-‐2	 49	 10	

	 27	

lognormal_threshold 100
num_twins 0
MC_steps 50

ellipsoid_controlfile.txt

x_incline_min 0
x_incline_max 360
y_incline_min 0
y_incline_max 360
z_incline_min 0
z_incline_max 360
BoA 1
CoA 1
axes_randomizer 0
mode_2_frac 0.0
A2oA 1
B2oA2 1
C2oA2 1

3.13 Matrix-Phase

Representing a matrix phase with MBuilder could find uses in trying to synthesize concrete
with some size distribution of aggregate in a matrix phase. There are two different ways to
create a matrix phase with MBuilder. The first way is appropriate for an aggregate with
curvature. The second is for faceted aggregate.

	 28	

The first method is similar to the process of producing particles by partially burning the
voxel except, here an even larger fraction of the voxel will remain unassigned and will
ultimately represent the matrix phase.

scale 1
dimension 100 100 100
overlap 1.05
periodic false
burn_fraction 0.7
ellipsoid_mean 0.10
ellipsoid_stdev 0.0
min_grainsize 0.0
lognormal_threshold 100
num_twins 0
MC_steps 0

x_incline_min 0
x_incline_max 360
y_incline_min 0
y_incline_max 360
z_incline_min 0
z_incline_max 360
BoA 1
CoA 1
axes_randomizer 10
mode_2_frac 0.0
A2oA 1
B2oA2 1
C2oA2 1

The second procedure involves setting a very high minimum threshold and turning a
significant fraction of the grains into the matrix phase.

scale 1
dimension 100 100 100
overlap 1.05
periodic false
burn_fraction 1.0
ellipsoid_mean 0.10
ellipsoid_stdev 0.0
min_grainsize 0.14
lognormal_threshold 100
num_twins 0
MC_steps 0

x_incline_min 0

	 29	

x_incline_max 360
y_incline_min 0
y_incline_max 360
z_incline_min 0
z_incline_max 360
BoA 1
CoA 1
axes_randomizer 0
mode_2_frac 0.0
A2oA 1
B2oA2 1
C2oA2 1

	 30	

Chapter 4

File input and output

File input coming soon, e.g. reading in ellipses from orthogonal EBSD scans and reading in
ellipsoids from 3D datasets.

After MBuilder has run to completion its output files are stored in the OUTPUT_FILES
directory under a subdirectory denoted my the current date. What resides in this
subdirectory will differ depending on whether it is from a run of the feedback loop or a
single run.

If a single run was performed, the contents of the output subdirectory will be, going (more
or less) in order of their incarnation:

test.input This file is the output of the ellipsoid seeding algorithm. Its contents
are a multi-line ellipsoid description with a repeat looking like this:

0.997052 0.99861 0.964535
0.111992 0.118579 0.113325
-0.071101 0.393157 0.916718
-0.324986 -0.878027 0.351357
0.943042 -0.272939 0.190199
0.681863 0.172474 0.0946573

Line 1 defines the ellipsoid centroid within the simulation domain. The simulation domain
is scaled to a maximum dimension of 1, so 100x100x100 becomes 1x1x1.

Line 2 are the three semi-axes.

Lines 3-5 are the unit vectors of the three Euler angles defining the axis tilt.

	 31	

Line 6 is the crystallographic orientation. MBuilder assigns random orientations but there
are existing codes which overlay texture.

elliptical.cells This file is the result of the ellipsoid optimization procedure.
It will be a significant subset of test.input, and has the same format.

Grains-Bulk-Edge-grains.ph.txt This contains a number of statistics
from the voxel image and looks something like this:

Grain Bulk(0)/Edge(1) Spin Old-Spin Vol NN Edge-Corr-Vol X-edge Y-edge Z-edge
 1 1 1 55 7847 8 62776 2 2 2
 2 1 2 40 7023 7 28092 2 2 1
 3 1 3 108 12686 10 50744 2 2 1
 4 1 4 31 5718 5 22872 2 2 1
 5 1 5 24 983 2 7864 2 2 2
 6 1 6 101 11422 11 45688 2 2 1
 7 0 7 71 12702 11 50808 0 0 0
 8 1 8 45 3159 5 12636 2 1 2
 9 0 9 63 5657 9 11314 0 0 0
 10 1 10 92 5437 8 21748 2 1 2

Grain is the final grain ID.

Bulk(0)/Edge(1) takes a value of zero if the grain is entirely in the bulk and one if it
touches at least one boundary.

Spin and Old Spin are previous renumberings of the structure.

Vol is the volume in voxels.

NN is the number of nearest neighbors.

Edge-Corr-Vol is an adjusted volume based on how much of the grain is in contact with a
boundary.

X,Y,Z-edge take value of 0,1,2 if the grain is in contact with zero, one, or two of the x,y,z
boundaries respectively.

Summary-grains.txt is as its name suggests, a summary. It looks like this:

110 Number of grains
 22 Number of bulk grains
 13.637769 Average Sphere Equiv. Radius
 14734.909 Average Area
 10695.863 Average Volume
 13.818182 Average no. of NN
 2.5935593 Average Volume/Size ratio

	 32	

 0.19017474 Ratio of VS:<R>

mRad.txt This is a file that contains a single column of the radius over the mean radius
(R/<R>)

grains-renum.ph This is the final image of the synthetic microstructure. It is
written in rho major (x varies faster than y varies faster than z). This is the final structure
that is read into the marching cubes surface meshing.

grains-renum.vti This is the visualization file of the final structure (written in
rho major with some headers)

singlerun_stats.txt Which contains some statistics about the MBuilder run, it
looks like, should be self-explanatory:

Mean: 12.7313
Lognormal Ellipsoid Mean: 0.12
Standard Deviation: 1.59333
Lognormal Ellipsoid Standard Deviation: 0
Skewness: -1.12729
Lognormal Minimum: 0.025
Lognormal Maximum: 100

If a feedback loop run was performed, the output files are mostly the same as the singlerun,
but the subdirectory structure will be different. In the subdirectory denoted by the date will
be subdirectories denoted by an iteration, e.g. iter_4. If min_success_iter > 1
then more than one subdirectory will exist on this level. Also located in this level are
mbuilder_iterations_input.txt and
mbuilder_iterations_output.txt examples of which are shown below,
respectively:

Iteration ellipsoid_mean ellipsoid_stdev min_grainsize lognormal_threshold
 1 0.083500 0.016200 18 0.104000
 2 0.084466 0.018041 18 0.104000
 3 0.084466 0.012295 18 0.104000
 4 0.084466 0.014488 18 0.104000

Iteration Mean Mean Residual Standard Deviation Standard Deviation Residual
 1 8.446622 0.096622 1.804101 0.184101
 2 8.467809 0.117808 1.890905 0.270905
 3 8.468175 0.118175 1.452850 0.167150
 4 8.663630 0.313630 1.572661 0.047339

Within the iteration denoted subdirectory should be the same files found in the singlerun
option, with one exception. Instead of singlerun_stats.txt, there will be a file
called residuals.txt.

	 33	

Chapter 5

Toolkit

Many of the standalone codes described in this section are bundled into the MBuilder
distribution described up to this point, and in many ways make MBuilder what it is. This
would be classified as the advanced section for those users who wish to reorder the steps
implicitly called in MBuilder or to call some of the functions one at a time in attempt to
obtain a very specific result.

Much more coming…

